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ABSTRACT

SUBJECT

Results are presented for the minimum weight design of SR2 unswept blade made of [Titanium/

Graphite-Epoxy/Titanium]s fiber composite. The blade which is rotating at high RPM is subject to ice

impact. The root chord length, blade thicknesses at five stations, and graphite-epoxy ply orientation

are chosen as design variables. Design constraints are placed on the behavior variables: local leading

edge strain and root damage parameter (combined stress failure criteria) as a function due to ice

impact, maximum spanwise centrifugal stress at the root of the deformed blade due to local damage,

first three natural frequencies and resonance margin after impact. The method of feasible directions is

employed to solve the inequality constrained minimization problem. The effect of ice speed and the

ice impact location on the final design are discussed.

INTRODUCTION

When aircrafts fly through clouds of super-cooled water droplets, ice formation occurs on forward

facing structural components. One such component is the engine inlet. With time, the ice accretes on

the inlet and eventually sheds due to structural vibrations as shown in Figure 1. As a result, blocks of

ice travelling at high speeds impacts the engine blades that are rotating at high RPM. This process

may cause severe damage to the blade and subsequently to the engine. Therefore, it is necessary to

properly account for ice impact during the blade design.



Fibrous composites are ideal for structural applications such as high performance aircraft engine blades

where high strength-to-weight and stiffness-to-weight ratios are required. These factors along with the

flexibility to select the composite layup and to favorably orient fiber directions help limit both the impact

damage and stresses arising from large rotational speeds.

The most effective way to consider impact damage damage and rotational slresses simultaneously for a

specific design is through formal optimization. The objective of this paper is to describe the use of the

NASA in-house code BLASIM 1 to perform structural tailoring of blades subject to ice impact. The SR2 2

unswept blade made of [Titanium/Graphite-Epoxy/Titanium]s fiber composite is considered for numerical

study. The ice piece is modeled as an equivalent spherical object impacting on the leading edge of the blade.

The direction of ice piece is opposite to that of the aircraft.

The root chord length, thicknesses at five stations along the span of the blade, composite layer thicknesses

and fiber orientation of graphite-epoxy ply are considered as design variables. Conslraints are placed on

average leading edge strain due to local damage, root damage caused by the impact, maximum centrifugal

stress at the root of the dented blade due to local plastic deformations, fast three natural frequencies and one

resonance margin (mode-I and 2nd engine order intersection) after impact. The centrifugal stress, natural

frequencies and resonance margins are computed after updating the blade geometry due to the local plastic

deformations. The analyses are carded out employing a three node triangular plate element with six degrees

of freedom per node. The dynamic response is computed via modal superposition technique. The effect of ice

impact parameters such as speed and impact location on the optimization are discussed.

BLADE DESIGN PROBLEM

Algorithm: Method of Feasible Directions

The method of feasible directions 3 solves the following inequality constrained optimization problem:

f'mdthe vector of design variables _" which will



subjectm

Minimize F(X) (I)

g/£)_<o j = 1,...m (2)

x_ < xi < x; i = 2,...n (3)

whereF is the objectivefunction,gj s are the m constraintsand, X/ and X_'are the lower and upper

bounds of the designvariables.

The optimization process proceeds iteratively by the common update formula

_,q = £cq-_+ a'rsq @)

where q istheiterationnumber,sq thevectorsearchdirection,and ¢x*a scalarmove parameter.Thus,

optimizationproceedsintwosteps:fastdeterminea"usable-feasible"searchdirection,{q,andthenperform

a one-dimensionalsearchinthisdirectiontoreducetheobjectivefunctionasmuch aspossiblesubjectto

theconstraints.ItisassumedherethattheinitialdesignJ2° isfeasible(satisfiesallconstraints),butif

this is not so, a search direction that will direct the design back to the feasible region can be found.

The usable feasible search direction is found by solving the following subproblem3:

Maximize#

subject to

_F(_). g +/3_<0

[a_, +,Bb<_0

S.S <_I

(5)

(6)

CO

(8)

where 0 is the gradient operator and the rows of [A] contain the transpose of the gradients of the set J of

currently active constraints, [gi (_') = 0, within a specified tolerance for j _ J ]. The components of 0 are

referred to as push-off factors, which push the design away from the currently active constraints (Figure 2).



Havingdetermined the search direction S, Equation (4) is used to update the design vector as a function of

to reduce the objective function as much as possible, subject to the constraints.

Example Blade and Model Description

The SR2 unswept blade considered here is made of layered composite. The layup is symmetric with

titanium skin and titanium core with graphite-epoxy plies in between ([Titanium/ Graphite-

Epoxy/Titanium]s). The planform of the blade with finite element grid is shown in Figure 3. In

constructing the thickness of the blade, it is assumed that the titanium skin is always present and the layup

is symmetric. Depending upon the blade thickness at a given location, the graphite-epoxy plies are included

to the specified limit, Also, the composite plies are alternately oriented starting with specified angle _ (see

Figure 4). The remaining thickness is filled with titanium core.

The blade is modeled with 55 nodes and 80 triangular plate finite elements Similar to the NASTRAN

TRIA3 element. The element has six degrees of freedom at each node. To further increase the

computational speed without sacrificing numerical accuracy, the total number of degrees of freedom have

been reduced to 24 by employing the Guyan reduction scheme. 4

The ice piece that impacts the blade is modeled as a spherical object. The ice impacts the leading edge of

the blade With a high velocity. A schematic depicting the geometry of the ice piece impacting the blade is

shown in Figure 5a. The angle 0 at which ice impacts the blade is a function of the ice velocity and the

engine speed (RPM). Depending on the diameter of the ice piece and the blade spacing, only a portion of the

ice impacts the blade as shown in Figure 5b. Also, only the normal component of the impact force to the

local chord is considered to cause the most damage locally and at the root. 5

For the post-impacted blade, static root stresses due to centrifugal loading, natural frequencies and the

corresponding resonance margin are computed by updating the geometry of the blade to include the plastic

local impact deformations. 6
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Objective Function

The objective function considered for minimization is the weight of the blade. The expression for the

weight of the blade is a summation over the number of elements and is given by

F = __jPivig
i=1

(9)

where Pi is the density and vi is the volume of ith element, and g is the acceleration due to gravity. In the

code the value of F is obtained by using the lumped masses of the mass matrix.

Design Variables

The design variables considered for minimization of the weight are: root chord length (chord length at

station 2), maximum thicknesses of the blade at five stations 2,5,7,9 and 11 (see Figure 3), and the

graphite-epoxy ply orientation. The chord lengths of the blade at all (11) stations are scaled as root chord is

changed during the optimization process. The thicknesses at other intermediate stations are interpolated with

cubic splines based on the five design thicknesses (control points).

Design Constraints

For the minimum weight design of the blade, the constraints are placed on the behavior variables: average

leading edge strain in the f'mite elements along the leading edge, root damage parameter due to ice impact,

maximum stress at the root due to centrifugal loading, first three natural frequencies and resonance margin.

A brief description of these constraints are given in the following subsections. The static root stress, natural

frequencies and resonance margin constraints are calculated for the updated blade geometry due to local ice

impact plastic deformations.

Leadine Ede e Strain Constraint: For computing the leading edge strain, the ice impact is considered as

transient distributed load and only a specified region of the blade (Figure 6) is modeled for local impact

analysis. 5,7 Since the damage caused by the impact is highly localized, only a portion of the blade around

the impact region (i.e., a specified local patch along the span and half of the blade along the chord) is

modeled. The patch is modeled using 35 nodes and 48 elements. A total of 16 elements surrounding the



impact node are assumed to be fully stressed and undergo large deflection. The stiffnesses of these elements

are modified to reflect perfectly plastic condition with an equivalent yield stress. Modal integration

technique is employed to obtain the undamped transient response of the local impact region utilizing the

fast five modes of the blade. The average spanwise bending strain (e) in the elements along the leading

edge is used as a local damage variable for the design constraint as

e _< v, (lO)

where e_is the allowable upper bound. At the initial design, the variation of the strain with the ice speed is

shown in Figure 7. The strain reaches a maximum value at an intermediate value of the ice speed due to the

assumption that only the force component normal to the chord causes the local local damage.

Root Darrtage Constraint: In the case of root damage analysis 8, the ice impact is modeled as an impulse

load and the stress response at the root (second row of elements) is obtained by modal superposition

technique using the flu'st three modes. A combined ply stress failure function based on modified distortion

energy 9 is used as a measure of the root damage. A value of this function greater than unity is an indication

of failure. If _ is the value of the failure function at any given state, the design constraint can be written as

_< 1.0 (11)

The predicted root damage function is larger for low values of ice speeds (Figure 7)z. At higher ice speeds,

the damage goes to zero due to the inclusion of only the impulse normal to the chord in the analysis.

Maximum Static Root Stress Constraint: Mter the ice impact, the radial stress caused by the centrifugal

loading at the root of the blade (in the second row of elements, see Figure 3) is computed. It is assumed that

maximum stress occurs at the top or bottom of the blade in the titanium material. An upper bound

constraint is placed on the maximum root stress (amax) as follows:

amax < oa (12)

Natural Frequency Constraints: The determination of natural frequencies for rotating blades requires the

inclusion of differential stiffness effects due to centrifugally induced stresses. In order to allow for
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differentialstiffnessgeneration,staticdeflectionsaredeterminedforthecaseofcentrifugalloadingandthen

theseare used to create differential stiffness matrix. The lower bound constraints on the first three natural

frequencies of post ice impacted blade are:

f, >_f: ,i = 1,2,3 (13)

where fl/s the lower bound value for ith mode frequency.

Resonance Margin Constraint: For any rotational system, forced response may be generated due to multiple

sources of excitation. The rotor speeds at which forced responses occur are predicted based on the

"Campbell" or speed-frequency diagrams. These display the natural frequency of each blade mode versus

rotor speed and, at the same time, the forcing function frequency (or engine order E lines) versus rotor speed,

as indicated schematically in Figure 8. These E lines represent the loci of available excitation energy at any

rotational speed for 1, 2, 3, etc. excitations per revolution. Wherever these curves intersect, a potential

source of destructive forced response exists. Not all intersections can be avoided. Design practice is to

eliminate the lower-order excitations from the operating range whenever possible. This is because the

sources of most forced response energy usually result from these lower-order resonances, particularly the 2E

lines. 9

The variation of natural frequency with speed may be nearly approximated as:

f2 = f_ +BN 2 (14)

wherefo isthezerospeedfrequency,andN istheengineRPM. To evaluatethemodal speedsensitivity,B,

frequencies at two discrete speeds must be determined. If both speeds are selected from the engine running

speed range (minimum cruise speed, N,,_ - Redline speed, Nrt), the frequency estimate will be quite close

over the entire running range. In the BLASIM code, the above two constants (foand B) are computed using

the frequency values at operating speed (Noe) and at an RPM close to redline speed (N2= 0.9Nn). Then the

frequencies at minimum cruise speed (f,,_.) and at redline speed (f,t) are given by

(15")



From these frequencies, the resonance margin as a fraction of excitation frequency for a given mode and

order is given by

M=maxI.(rN_.z._f --),(6Of_.rNa) l

Due to the nature of the response curve (flat compared to the engine order E lines) only one of the terms,

(i.e., either margin at minimum cruise speed or at the redline speed) in the parenthesis is positive. The

resonance margin constraint for post ice impacted blade can be written as

M > M I (18)

where Ml is the lower limit of the margin.

RESULTS AND DISCUSSION

For the numerical study of the structural tailoring problem, the setting angle of the SR2 blade is chosen as

57° and the number of blades is eight. The maximum graphite-epoxy material layer thickness is 0.02" (4

plies on either side of the symmetric plane). The properties of the titanium and graphite-epoxy composite

ply are given in Table 1. For the local damage analysis, the equivalent yield stress around the impact region

is assumed to be 206 ksi.

Effect of Ice Speed

The tailoring studies are performed for a number of ice speeds in the range 25-250 knots. The ice impact

region is assumed to be 50-90% span of the blade. The summary of the optimization results along with the

initial design vector and constraint values are given in Table 2. A typical iteration history of the

optimization run is shown in Figure 9. This is for an ice speed of 125 knots at which initial design

violated the leading edge strain constraint. Hence the optimization method initially tries to minimize the

constraint violation and as a result, there is an increase of the objective function for the first few iterations.
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Once the design point is moved inside the feasible region, the objective function decreases in the subsequent

iterations.

For a few ice speeds, namely, 50, 103, 150 and 250 knots, initial and constrained optimum blades thickness

profiles are shown in Figure 10. It can be seen that thickness at station 2 has strong influence on the blade

weight as well as the behavior variables, especially leading edge strain and root damage function. For 50 and

103 knots, the root damage constraint is violated by wide margin initially and hence there is an increase in

the thickness at station 2. However, the objective function is decreased at the optimum marginally (5.9%)

due to reduction in other thickness variables and root chord. At the ice speeds 150 and 250 knots, the

optimum blade thicknesses are smaller. This is due to the fact that impact responses axe lower (see Figure

7) and only the natural frequency constraints controlled the design.

At the initial design, the root damage function is maximum near 25 knots and the strain is maximum near

103 knots (Figure 7). Accordingly, the constraints on these variables have maximum violation at the

corresponding ice speeds (see Table 2). As a result, the minimum weight design resulted in an increase in

the blade weight by 2% at 25 knots and 9.4% at I03 knots. The final design at 25 knots could not satisfy

the root damage constraint as it hit the first and third natural frequency constraint boundary. For higher ice

speeds, the optimum designs are mostly controled by the bounds on natural frequencies. The root stress and

resonance margin constraints ate satisfied and are not active for the entire range of ice speeds considered.

Also, the graphite-epoxy ply angle has negligible effect on the optimization. It remained more or less

constant at 45 ° except for ice speed of 250 knots. Only one resonance margin (intersection of mode 1,-2nd

excitation order) constraint is imposed and it is not active in all the designs

Effect of Ice Impact Region

To study the effect of ice impact region, three patches, namely, 25-65%, 40-80% and 50-90% span of the

blade are chosen. As the impact region is changed, the radius at which the ice impacts the blade changes.

The ice impact location is approximately (-45%, _-60% and _70%) at midpoint of the region. The

optimum designs for an ice speed of 150 knots are compared in Table 3. As the impact is closer to the root,



theleadingedgestrain and the root damage function are smaller and hence are not critical for the final design

state as expected. The optimum designs in all the cases are controlled by the natural frequency constraints.

Though the root damage function constraint is violated for 40-80% and 50-90% regions, it is inactive at the

optimum.

CONCLUSIONS

From the tailoring studies performed on the SR2 composite blade subject to ice impact constraints, the

following conclusions can be drawn:

1. The blade thickness at station 2 and the root chord have significant effect on the blade weight as well as

the leading edge strain and root damage function.

2. The minimum weight designs appears to be insensitive to the changes in graphite-epoxy ply angle.

3. For higher ice speeds, the optimum results are controlled by natural frequency constraints.

4. When ice impacts closer to the root of the blade the optimum design is governed by natural frequency

constraints.
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Figure 1. A Schematic of Ice Impact on an Engine Blade
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Figure 2. Geometric Interpretation of Feasible Direction in the Optimization
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Table 1: Properties of the Blade Constituent Materials

Type i (106psi)
.................... ! ...................

'fitaniumi 165

0i6)

Graphit_ 32.0 1.0

Epoxy

E_ G12

(106psili(106psi3

165 6.4

0.7
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Table 3: Summary of Optimization Results - Effect of Impact Region
(RPM = 3600; Ice Size = 0.8"; Ice Speed = 150 knots)

Design
Parameter

root chord length
(')

thickness at

s_fion 2 (")
thickness at
station 5 f')
thickness at
station 7 (")
thickness at
station 9 C)
thickness at
station 11 (")
ply angle (o)

blade wt. 0b0

leading edge
strain (%)

root static stress
(psi)

maximumroot
dam=age function
natural frequency

natural frequency
£2(epS)

initial
final

initial
final

initial
final

initial
fmal

initial
final

natural frequency initial
fs (cps) final

l'e,sonance
margin mode-I-

2E (%)
No. of function

evaluations

initial
fmal

Lower Upper
Bound Bound

0.900 1.200

0.600 2.000

0.080 0.200

(}.015 0.200

0.015 0.200

0.015 0.200

-90.0 +90.0

--- 3.0

---- 4000

-- 1.0

150 --

500 ---

800

5.0 --

Initial

, Design
1.02307

0.89270

O.14470

0.08370

Optimum Desi_s
Ice Impa

25-65%

0.9000"t

0.84094

0.15942

0.09126

t Region (% Span)
40-80%

0.90000"1"

0.66181

50-90%

0.90001"

0.78194

0.14984 0.13408

0.11470 0.08352

0.05760 0.04266 0.04997 0.05768

0.03360 0.02555 0.02974 0•034415

42.58
0.70252

(711.31%)
0.1077
0.066

45.0000
0.79216

.w

1936.78
1987.44

45.2807

0.62524
(-21 •07%)

0.7110
0.411

1931.04
2381.96
3.5231_
0.4169
170.94
169.19

528.22
514.53

0.6522
0.0061

160.11
181.29

494.135
500.28*

45.31
0.64054

(-19.14%)
2.608
2.637

1901.04
1876.36

3.9221 ¢
0.6699
160A2
150.91"

575.70
566.14

-- 742.34_ 686.675 812A7
838.98 797.42* 799.97*

°w 33.10
3129

78

25.66
40.92

105 77

* Active constraint; f Active side constraint; _ Initially Violated constraint; + Violated constraint
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